Network Standard

Document No: NW000-S0059
Amendment No: 2
Approved By: Manager – AES
Approval Date: 04/10/2019
Review Date: 04/10/2022

Supersedes Network Standard (NETWORK) NW000-S0059 Amendment No.1

NW000-S0059 NS200 MAJOR SUBSTATIONS VENTILATION DESIGN STANDARD
ISSUE

For issue to all Ausgrid and Accredited Service Providers’ staff involved with the design of major substations, and is for reference by field, technical and engineering staff.

Ausgrid maintains a copy of this and other Network Standards together with updates and amendments on www.ausgrid.com.au.

Where this standard is issued as a controlled document replacing an earlier edition, remove and destroy the superseded document.

DISCLAIMER

As Ausgrid’s standards are subject to ongoing review, the information contained in this document may be amended by Ausgrid at any time. It is possible that conflict may exist between standard documents. In this event, the most recent standard shall prevail.

This document has been developed using information available from field and other sources and is suitable for most situations encountered in Ausgrid. Particular conditions, projects or localities may require special or different practices. It is the responsibility of the local manager, supervisor, assured quality contractor and the individuals involved to make sure that a safe system of work is employed and that statutory requirements are met.

Ausgrid disclaims any and all liability to any person or persons for any procedure, process or any other thing done or not done, as a result of this Standard.

All design work, and the associated supply of materials and equipment, must be undertaken in accordance with and consideration of relevant legislative and regulatory requirements, latest revision of Ausgrid’s Network Standards and specifications and Australian Standards. Designs submitted shall be declared as fit for purpose. Where the designer wishes to include a variation to a network standard or an alternative material or equipment to that currently approved the designer must obtain authorisation from the Network Standard owner before incorporating a variation to a Network Standard in a design.

External designers including those authorised as Accredited Service Providers will seek approval through the approved process as outlined in NS181 Approval of Materials and Equipment and Network Standard Variations. Seeking approval will ensure Network Standards are appropriately updated and that a consistent interpretation of the legislative framework is employed.

Notes: 1. Compliance with this Network Standard does not automatically satisfy the requirements of a Designer Safety Report. The designer must comply with the provisions of the Workplace Health and Safety Regulation 2011 (NSW - Part 6.2 Duties of designer of structure and person who commissions construction work) which requires the designer to provide a written safety report to the person who commissioned the design. This report must be provided to Ausgrid in all instances, including where the design was commissioned by or on behalf of a person who proposes to connect premises to Ausgrid’s network, and will form part of the Designer Safety Report which must also be presented to Ausgrid. Further information is provided in Network Standard (NS) 212 Integrated Support Requirements for Statutory Network Assets.

2. Where the procedural requirements of this document conflict with contestable project procedures, the contestable project procedures shall take precedent for the whole project or part thereof which is classified as contestable. Any external contact with Ausgrid for contestable works projects is to be made via the Ausgrid officer responsible for facilitating the contestable project. The Contestable Ausgrid officer will liaise with Ausgrid internal departments and specialists as necessary to fulfill the requirements of this standard. All other technical aspects of this document which are not procedural in nature shall apply to contestable works projects.

INTERPRETATION

In the event that any user of this Standard considers that any of its provisions is uncertain, ambiguous or otherwise in need of interpretation, the user should request Ausgrid to clarify the provision. Ausgrid’s interpretation shall then apply as though it was included in the Standard, and is final and binding. No correspondence will be entered into with any person disputing the meaning of the provision published in the Standard or the accuracy of Ausgrid’s interpretation.

KEYPOINTS

This standard has a summary of content labelled “KEYPOINTS FOR THIS STANDARD”. The inclusion or omission of items in this summary does not signify any specific importance or criticality to the items described. It is meant to simply provide the reader with a quick assessment of some of the major issues addressed by the standard. To fully appreciate the content and the requirements of the standard it must be read in its entirety.

AMENDMENTS TO THIS STANDARD

Where there are changes to this standard from the previously approved version, any previous shading is removed and the newly affected paragraphs are shaded with a grey background. Where the document changes exceed 25% of the document content, any grey background in the document is to be removed and the following words should be shown below the title block on the right hand side of the page in bold and italic, for example, Supersedes – document details (for example, “Supersedes Document Type (Category) Document No. Amendment No.”).
This standard details the technical requirements for the design of ventilation systems for Ausgrid major substation buildings. It includes the following scope and addresses risks as listed:

- It generally applies to new Zone and Subtransmission substations.
- Types of ventilation systems considered are natural ventilation, mechanical ventilation, air conditioning and dehumidifying. Other types of system are not considered. (Cl. 6.1)
- Design requirements are included for both natural and mechanical ventilation systems.
- NS113 applies specifically to the ventilation of Chamber Substations.
- Ventilation is provided to dissipate heat from equipment and any heat entering through the building fabric.
- The system will minimise dust and other airborne contaminants.
- The system will incorporate protective measures.
- Ventilation to all rooms and accessible locations should be sufficient to eliminate confined spaces wherever possible.
- Mechanical ventilation to be designed in accordance AS 1668.2.
- Preferred control for mechanical systems using 7-day time clock with light switch override.
- Mechanical systems should be sized to maintain switchroom / control room temperature within range +5°C to +40°C.

Functional and Design Requirements

The major design and functional requirements include:

- Natural ventilation is preferred and the open area for natural ventilation should not exceed 1% of floor area of room unless required otherwise by this standard.
- Segregated fire compartments may have a different ventilation solution in each compartment.
- Aggressive environments may need vent filtration or other protective measures.
- Ventilation to all rooms and accessible locations should be sufficient to eliminate confined spaces wherever possible.
- Vent inlets should be below the outlets, vent outlets as high as possible.
- Mechanical ventilation to be designed in accordance AS 1668.2.
- Preferred control for mechanical systems using 7-day time clock with light switch override.
- Mechanical systems should be sized to maintain switchroom / control room temperature within range +5°C to +40°C.

Specific Requirements and System Components

Specific requirements for different rooms apply and include:

- Cable basements
- Switchrooms
- Control Rooms
- Capacitor Rooms
- Battery accommodation
- Indoor transformer bays

Ventilation system component details include specific provisions for:

- Duct work
- Fire dampers
- Air filters
- Ventilation louvres and grills
- Vermin screens
- Bushfire ember guards
- Noise
- Alternative materials

Air Conditioning and Dehumidifying

Air conditioning and dehumidifying systems shall only be adopted as a last resort. A hierarchy of alternatives is listed. Where air conditioners/dehumidifiers are used the requirements include:

- Listed key design criteria Cl 9.2
- Generally to consist of split ducted air cooled refrigeration
- Can be individual systems for each room or multi-headed where the reliability/maintenance of a single unit is addressed.
- Ducting not to be installed above major electrical equipment or control cabinets.
- Systems shall have automatic thermostatic controls with manual override.
- Access to thermostat set-point to be restricted by password.
- System signage to be provided, including instructions to RESET upon exit.
- System commissioning and documentation to be completed.

Tools and Forms

Annexure A – Compliance Checklist

Where to for more information?

Section 5, 6

Section 7, 8

Section 9

Tools and Forms

Annexure A – Compliance Checklist

Annexure A – Compliance Checklist

Annexure A – Compliance Checklist

Where to for more information?

Section 1, 2, 5
Contents

1.0 PURPOSE .. 6
2.0 SCOPE .. 6
3.0 REFERENCES .. 6
 3.1 General... 6
 3.2 Ausgrid documents ... 6
 3.3 Standards and other documents .. 6
 3.4 Acts and regulations ... 7
4.0 DEFINITIONS ... 7
5.0 FUNCTIONAL REQUIREMENTS .. 11
 5.1 General... 11
 5.2 Preferred ventilation system .. 11
 5.3 Building Code of Australia compliance ... 11
 5.4 Fire resistance and compartmentation .. 11
 5.5 Overpressure .. 12
 5.6 Control of dust and contaminants .. 12
 5.7 Confined spaces ... 13
6.0 DESIGN REQUIREMENTS .. 13
 6.1 General... 13
 6.2 Designer safety report ... 13
 6.3 Natural ventilation ... 13
 6.4 Mechanical ventilation ... 14
 6.5 Air conditioning and dehumidifying ... 14
 6.6 Air quality and temperature control ... 15
 6.7 Ventilation assessment ... 15
7.0 SPECIFIC VENTILATION REQUIREMENTS ... 15
 7.1 General... 15
 7.2 Cable basements ... 15
 7.3 Switchrooms.. 16
 7.4 Control rooms... 16
 7.5 Capacitor rooms .. 17
 7.6 Battery accommodation ... 17
 7.7 Indoor transformer bays .. 18
8.0 VENTILATION SYSTEM COMPONENTS ... 18
 8.1 General... 18
 8.2 Ductwork .. 19
 8.3 Fire dampers ... 19
 8.4 Air filters ... 20
 8.5 Ventilation louvres and grilles .. 20
 8.5.1 Weatherproof louvres ... 20
 8.5.2 Supply air diffusers .. 20
8.5.3 Inlet and exhaust grilles ... 21
8.5.4 Relief air grilles ... 21
8.5.5 Vermin screens .. 21
8.5.6 Bush fire ember guards ... 21
8.5.7 Noise ... 21

9.0 AIR CONDITIONING AND DEHUMIDIFYING .. 22
9.1 General .. 22
9.2 Key design criteria ... 22
9.3 Main system components ... 23
9.4 System control and over-ride ... 24

10.0 RECORDKEEPING ... 25
11.0 AUTHORITIES AND RESPONSIBILITIES 25
12.0 DOCUMENT CONTROL .. 25

ANNEXURE A – SAMPLE COMPLIANCE CHECKLIST 26
1.0 PURPOSE

Network Standard NS200 provides the requirements for natural, mechanical and other types of ventilation to be considered and included into the design of major substations.

2.0 SCOPE

This Network Standard details the technical aspects to be considered in the design of ventilation systems for Ausgrid major substation buildings. Generally this includes new zone and sub-transmission substations.

This Network Standard provides the requirements for natural and mechanical ventilation systems. Other types of ventilation systems, specifically dehumidifiers and air conditioning, are also covered by this standard.

The ventilation of new Ausgrid major substation buildings shall comply with this Network Standard. For existing substations, the Designer should assess each site individually and consider the relevant application of this Network Standard where it is reasonably practicable and cost-effective.

Refer to NS113 Site Selection and Construction Design Requirements for Chamber Substations for ventilation requirements associated with chamber substations.

This Network Standard should be read in conjunction with other relevant Ausgrid Network Standards and Engineering Guidelines.

3.0 REFERENCES

3.1 General

All work covered in this document shall conform to all relevant Legislation, Standards, Codes of Practice and Network Standards. Current Network Standards are available on Ausgrid’s Internet site at www.ausgrid.com.au.

3.2 Ausgrid documents

- Bush Fire Risk Management Plan
- Company Form (Governance) - Network Document Endorsement and Approval
- Company Procedure (Governance) - Network Document Endorsement and Approval
- Company Procedure (Network) - Production / Review of Network Standards
- Customer Installation Safety Plan
- Electrical Safety Rules
- Electricity Network Safety Management System Manual
- NS113 Site Selection and Construction Design Requirements for Chamber Substations
- NS181 Approval of Materials and Equipment and Network Standard Variations
- NS185 Major Substations Design Standard
- NS187 Passive Fire Mitigation Design of Substations
- NS188 Design for Substation Overpressure
- NS191 Batteries and Battery Chargers in Major Substations
- NS210 Documentation and Reference Design Guide for Major Substations
- NS212 Integrated Support Requirements for Ausgrid Network Assets
- NS261 Requirement for Design Compliance Framework for Network Standards

3.3 Standards and other documents

- AS 1324.1 Air filters for use in air conditioning and ventilation: Part 1: Application, performance and construction
- AS 1530 Methods for fire tests on building materials, components and structures:
 - AS 1530.1 Part 1: Combustibility test for materials
• AS/NZS 1530.3 Part 3: Simultaneous determination of ignitability, flame propagation, heat release and smoke release.
• AS 1530.4 Part 4: Fire resistance test of elements of building construction.
• AS 1668 The use of ventilation and air conditioning in buildings:
 • AS 1668.1 Part 1: Fire and smoke control in multi-compartment buildings
 • AS 1668.2 Part 2: Ventilation design for indoor air contaminant control
• AS 1682 Fire dampers:
 • AS/NZS 1682.1 Part 1: Specification
 • AS 1682.2 Part 2: Installation
 • AS 1890 Thermally released links
• AS/NZS 2107 Acoustics – Recommended design sound levels and reverberation times for building interiors
• AS 2676.2 Guide to the installation, maintenance, testing and replacement of secondary batteries in buildings – Part 2: Sealed cells
• AS 2865 Confined Spaces
• AS 3011.2 Electrical installations – Secondary batteries installed in buildings – Part 2: Sealed cells
• AS 4254 Ductwork for air handling systems in buildings:
 • AS 4254.1 Part 1: Flexible Duct
 • AS 4254.2 Part 2: Rigid Duct
• AS 4436 Guide for the selection of insulators in respect of polluted conditions
• Building Code of Australia (BCA)
• ENA Standards/Guidelines (www.ena.asn.au)
• ENA Doc 001-2008 National Electricity Network Safety Code
• ISSC 28 – Guideline for Enclosed Spaces in NSW Electricity Networks

3.4 Acts and regulations
• Electricity Supply (General) Regulation 2014 (NSW)
• Electricity Supply (Safety and Network Management) Regulation 2014
• Work Health and Safety Act 2011 and Regulation 2017

4.0 DEFINITIONS

Accredited Service Provider (ASP)

An individual or entity accredited by the NSW Department of Planning and Environment, Energy, Water and Portfolio Strategy Division, in accordance with the Electricity Supply (Safety and Network Management) Regulation 2014 (NSW).

Active System

A system that has moving parts or relies on mechanical, chemical or electrical controls in order to function. Examples of active systems include mechanical fans and fire protection systems such as fire dampers and smoke detection systems.

Access requirements

Requirements for openings, loading docks corridors and passages and for supporting the weight of all equipment and personnel.

Air Conditioning

A system that uses a heat exchanger to provide the necessary temperature differential to enable cooled air to be delivered to the required locations.

Approved

Requires written consent from Ausgrid. Such written approval may contain authorised specific departures from this Network Standard.

BCA

Building Code of Australia, which is Volume 1 and Volume 2 of the National Construction Code (NCC).
Bush Fire Prone Area An area of land that can support a bush fire or is likely to be subject to bush fire attack. Bush fire prone land maps are prepared by local councils and certified by the Commissioner of the Rural Fire Service.

Business Management System (BMS) An Ausgrid internal integrated policy and procedure framework that contains the approved version of documents.

Cage As defined in Ausgrid Electrical Safety Rules.

Dehumidifying A system that uses a heat exchanger to provide the necessary temperature differential to enable dehumidified air to be delivered to the required locations.

Design The substation design that is to be provided by the Designer in compliance with Ausgrid requirements.

Design Life The timeframe in which the building can operate efficiently and be fit for purpose without break down of the building fabric or structure.

Designer A nominated party responsible for the layout and design of the project under the overall direction of Ausgrid. The Designer may be an internal group within Ausgrid, or an external party appointed to the project.

Document control Ausgrid employees who work with printed copies of document must check the BMS regularly to monitor version control. Documents are considered “UNCONTROLLED IF PRINTED”, as indicated in the footer.

Electrical Layout Plan A concept plan showing the spatial arrangement of equipment and the minimum dimensions of the substation building and yard. Electrical Layout Plans are provided for specific projects by Ausgrid.

Ember Smouldering or flaming wind-borne debris that is capable of entering or accumulating around a building.

Ember Guard A cover inserted in or over an opening or cavity to prevent the entry of burning embers.

Equipping Installation of substation equipment, including but not limited to cables, busbars, switching and control equipment and transformers.

Fire Resistance Level (FRL) The ability of an element of construction, component or structure to maintain its structural adequacy, integrity and thermal insulation during exposure to a fire for a specific fire resistance period.

Fire Stopping Measures that are adopted to prevent the spread of fire, smoke and acid residues from one compartment to another.

GIS Gas Insulated Switchgear.

High voltage A voltage above 1,000 volts alternating current or 1,500 volts direct current.

Layout Drawings Drawings to scale showing the dimensions and relative locations of substation equipment and infrastructure.

Low maintenance Low required return period for inspection and maintenance.

Major Substation Zone and sub-transmission substations with primary voltages of 132, 66 or 33 kV.
Mechanical Ventilation
Mechanically assisted airflow utilising motorised fans to provide the necessary pressure differential to deliver the required air flow.

Natural Ventilation
Non-assisted airflow caused by a decrease in air density as temperature is raised. The decrease in air density causes a pressure differential which provides the energy to drive the natural ventilation system.

Network Standard
A document, including Network Planning Standards, that describes the Company's minimum requirements for planning, design, construction, maintenance, technical specification, environmental, property and metering activities on the distribution and transmission network. These documents are stored in the Network Category of the BMS repository.

Overpressure
A rapid rise in the enclosure pressure caused by high voltage electrical equipment failing in an enclosed compartment.

Passive System
Describes a system with no moving parts which does not rely on other external controls in order to function as intended. Examples of passive systems include natural ventilation and fire rated building elements such as fire barrier walls etc.

Review date
The review date displayed in the header of the document is the future date for review of a document. The default period is three years from the date of approval however a review may be mandated at any time where a need is identified. Potential needs for a review include changes in legislation, organisational changes, restructures, occurrence of an incident or changes in technology or work practice and/or identification of efficiency improvements.

Self Cleaning
Uses natural weather conditions to remove dust, debris and other airborne materials.

STS
Sub-transmission substation. Normally 132/33 kV or 132/66 kV.

Substation
In this standard, the term substation refers only to Zone or Sub-transmission substations. This includes substations with 132/11 kV, 66/11 kV, 33/11 kV, 132/66 kV and 132/33 kV. This may include temporary STS or Zone substations.

Switch building
Building housing electrical switchgear and equipment.

Switch room
A room for housing switchgear, also known as switchgear room.

Switchgear
Equipment for controlling the distribution of electrical energy or for controlling or protecting circuits, machines, transformers, or other equipment.

Switching equipment
Switchgear, circuit breakers, fuse switches, ring main switches and isolators.

Switchyard
Outdoor yard containing high voltage electrical substation equipment.

Transformer
A static piece of apparatus with one or more windings which, by electromagnetic induction, transforms a system of alternating voltage and current into another system of voltage and current usually of
different values but with the same frequency, for the purpose of transmitting electrical power.
5.0 FUNCTIONAL REQUIREMENTS

5.1 General

The main purpose of ventilation in major substation buildings is as follows:

- Provide cooling to dissipate heat from equipment and any heat that may enter the building through the building fabric.
- Minimise the entry of dust and other airborne contaminants.
- Provide a supply of fresh air necessary to maintain satisfactory working conditions for personnel.

In addition to the heat loss from equipment, heat can enter a substation building via the roof, walls and floor by a combination of conduction, convection and radiation. In order to minimise unnecessary heat build-up inside substation buildings due care shall be taken in the overall building design and orientation and also in the selection of construction materials to be employed.

The ventilation system installed shall fully satisfy the equipment manufacturer’s recommendations relating to air quality and temperature control for the equipment accommodation.

5.2 Preferred ventilation system

For reasons of reliability, simplicity and low maintenance the use of natural ventilation is preferred over the use of mechanical ventilation systems.

Natural ventilation shall be adopted where site conditions, building layout and heat loads allow.

Unless stated otherwise in this Network Standard, the open area provided for natural ventilation of electrical equipment shall not exceed a nominal 1% of the floor area of the room.

5.3 Building Code of Australia compliance

The Building Code of Australia (BCA) is Volumes 1 and 2 of the National Construction Code (NCC) and has performance requirements for ventilation. However, the “Deemed to Satisfy” provisions of the BCA apply to habitable and occupied spaces in a building and, hence, may not always be applicable to electricity substations.

The BCA Performance Requirement FP4.3 states “A space in a building used by occupants must be provided with means of ventilation with outdoor air which will maintain adequate air quality.” The BCA requires a habitable room, office, shop, factory etc. to have either natural or mechanical ventilation.

The BCA generally requires the aggregate size of openings for natural ventilation (when provided) in a habitable room to be not less than 5% of the floor area of the room. From May 2012 a specific exemption applies for Class 8 electricity network substations, and this BCA requirement for ventilation no longer applies to major substations.

Ausgrid’s major substation buildings are for the most part unoccupied and generally are not considered to contain habitable rooms. As such, rooms housing electrical equipment inside major substation buildings may also be granted other exemptions from the ventilation requirements of the BCA by the relevant certifying authorities.

5.4 Fire resistance and compartmentation

At some locations, the design of a major substation building may incorporate the use of fire compartment construction to segregate switchrooms, cable basements, cable risers, control rooms etc.

The ventilation of these areas shall be treated individually and different ventilation solutions may be required for each compartment to address the specific requirements of the installed equipment. The Fire Resistance Level (FRL) between the compartments shall be maintained by the use of fire
dampers, fire rated construction of ventilation ducts, etc and by adequate separation of ventilation openings in external walls.

External wall openings in buildings do not normally require protection by fire dampers or other means unless:

(a) protection is specifically required by the BCA (e.g. walls that are required to have an FRL and are within 3m of a side or rear boundary), or

(b) the protection relates to a defined fire hazard within the major substation (e.g. within 7m to 10m of an unprotected main transformer), or

(c) protection is required by the Network Standards at a specific location.

The protection of external wall openings against other, site specific, potential fire hazards, such as adjacent fuel storage facilities, significant traffic accidents etc. shall be subject to a formal risk assessment and the review and approval of Ausgrid.

Any additional fire dampers (or other protection measures) that may be required shall address only the identified risks that are deemed to be unacceptable for the major substation.

External wall openings that are later required to be sealed (e.g. for retrofit of air conditioning) shall be sealed with construction that achieves that same FRL as the associated wall. Any installed fire dampers should be decommissioned or removed to avoid ongoing maintenance costs.

The requirements for FRL and compartmentation of major substation buildings are provided in NS187 Passive Fire Mitigation Design of Substations.

5.5 Overpressure

Overpressure requirements, where applicable, shall be assessed separately from ventilation requirements. Where provision needs to be made for overpressure relief any permanent openings that are provided primarily for building ventilation shall be included as part of the overpressure relief. Where these external wall openings are later required to be sealed (e.g. for retrofit of air conditioning), the impact on overpressure relief for the building shall be re-assessed and suitable modified provisions made where required.

NS185 Major Substations Building Design Standard and NS188 Design for Substation Overpressure provide details of overpressure requirements for substations.

For arc fault events, any additional dedicated overpressure relief openings should be normally closed to minimise infiltration and dust entry. Wherever possible, overpressure relief panels shall be suitably located, designed and insulated so as to minimise the thermal load from the panels into the building. This will enable the resulting ventilation requirements to also be minimised.

For deflagration events, any additional dedicated overpressure relief openings should be of the free open vent design (unless approved otherwise) in accordance with NS 188.

5.6 Control of dust and contaminants

In aggressive environments, such as moist, salt laden or dusty air, electrical equipment designed for indoor applications may need additional protection to prevent damage due to exposure.

In rooms housing indoor electrical equipment ingress of dust and other contaminants is a major concern. If dust and other contaminants are allowed to accumulate on open high voltage bushings, insulators, etc., the likelihood of flashover is increased. The probability of this occurring is even greater if high humidity situations also exist inside the rooms.

The ventilation of these areas shall consider suitable protection measures that may include site specific vent filtration (e.g. HEPA filters to address coal dust), leeward facing vents and fully sealed equipment rooms. Alternative design approaches should also be considered and may include dehumidifiers, air conditioning and internal equipment heaters.
AS 4436 Guide for the selection of insulators in respect of polluted conditions (Section 7) provides some guidance on the evaluation of pollution severity for outdoor insulators including various site measurement methods. This guide should be considered as a potential technique in assessing the expected air quality for dusty or contaminated environments and as an input into the ventilation requirements for air insulated equipment.

5.7 Confined spaces
Ventilation to all rooms and accessible locations within the building shall be sufficient to ensure that confined spaces are eliminated wherever possible.

ISSC 28 Guideline for Enclosed Spaces in NSW Electricity Networks contains useful material to assist in the evaluation and classification of enclosed spaces in electricity networks, and also provides information on appropriate risk controls.

All confined spaces shall be managed in accordance with the requirements of AS 2865 Confined Spaces and the Work Health and Safety Regulation 2011.

5.8 Recordkeeping in SAP
Information relating to the ventilation system shall be recorded and updated in Ausgrid’s SAP system as an integral part of the installation process.

The key system details to be retained include, but are not limited to, the following items:

- Ausgrid contact to report system faults and alarms.
- Ausgrid key reference drawing(s).
- System details – manufacturer, installer, model, serial number.
- The location of system components that require routine inspection and maintenance (e.g. fan motors, fire dampers, filters, sensors etc.).
- The design thermostat set-point for air conditioning systems.

6.0 DESIGN REQUIREMENTS

6.1 General
This Network Standard deals with the design of the following types of ventilation systems:

- Natural Ventilation
- Mechanical Ventilation
- Air Conditioning
- Dehumidifying

Other types of ventilation systems are not covered by this Standard.

6.2 Designer safety report
For plant, including machinery and equipment, the Work Health and Safety Regulation 2011 requires adequate information to be provided by the designer of the plant, or any part of the plant, to the person who commissioned the design. Ausgrid requires this information to form part of a Designer Safety Report.

The Designer Safety Report shall comply with the requirements of NS 210 Documentation and Reference Design Guide for Major Substations and shall be prepared at the completion of the design development process.

6.3 Natural ventilation
The operation of a system of natural ventilation is as a result of a decrease in air density as its temperature is raised due to the heat gain from various sources. This decrease in air density causes a pressure differential which provides the energy to drive the natural ventilation system.

Because the pressure differential developed is relatively small, ventilation louvres and grilles, etc, need to be of a design that offers little resistance to air flow.

To harness the thermal effects and maximise the performance of a natural ventilation system the air inlet openings should be located below the exhaust level, and the exhaust openings should be as high as possible. The building configuration, equipment layout, the control of dust and contaminants (Refer to Clause 5.6) and the ventilation maintenance requirements should be considered as part of the location of ventilation openings.

Any ventilation ducts shall have a large cross sectional area and a minimum number of bends to minimise losses. Long horizontal runs of exhaust duct shall be avoided.

Due to a natural ventilation system's sensitivity to the direction of the prevailing wind, the location of ventilation openings on the external face of a building shall be carefully selected to minimise any negative effect. The benefit of wind effects can be maximised by positioning ventilation openings on adjacent or opposite sides of the building, the inlet on the windward side and the exhaust on the leeward side. The prevailing wind direction for the time of year that is expected to have the highest temperatures should be used when locating the ventilation openings.

6.4 Mechanical ventilation

A mechanical ventilation system involves the use of a fan to provide the necessary pressure differential to deliver the air flow required.

Mechanical ventilation systems are to be designed in accordance with the requirements of AS 1668.2 Ventilation design for indoor air contaminant control.

Mechanical ventilation systems can incorporate one or more components as required, including a supply air fan, filters, exhaust fan and supply air and exhaust ductwork to distribute the air throughout the space to be ventilated.

Supply air systems draw fresh air from outside and are provided with filters to minimise the amount of dust that is allowed to enter the ventilated space.

Depending on the mechanical ventilation system design air flowrate, system resistance and the space available for ventilation plant, the types of fans selected can be either axial or centrifugal.

Centrifugal fans are generally used for higher pressures and flowrates and offer lower sound levels for an equivalent duty compared to an axial fan. By comparison, axial fans are lower cost and physically smaller but require multiple stages to generate higher pressures and are less efficient and noisier.

Fresh air intakes shall be located clear of exhaust openings or other sources of pollution that may reduce the quality of the air entering the system. The design shall consider the future inspection and maintenance requirements for any ventilation filters or other items associated with the air intakes.

Fresh air intake plenums and ducts shall be maintained dry in service. Provision should also be made for inspection and cleaning of the internal surfaces.

The preferred method of control for a typical mechanical ventilation system serving a substation area is a fully adjustable 7 day time clock for automatic operation, with light switch over-ride to initiate fan start when the lighting serving that particular area is switched on. The light switch override function shall be limited to up to 8 hours operation by an adjustable timer so that if the lights are left on for an extended period of time the fan will not continue to operate unnecessarily and control will revert to time clock mode.

6.5 Air conditioning and dehumidifying
An air conditioning and dehumidifying system involves the use of a heat exchanger to provide the necessary temperature differential to enable cooled and/or dehumidified air to be delivered to the required locations.

Air conditioning and dehumidifying systems are to be designed in accordance with the requirements of AS 1668.2.

Refer to Section 9 for the design requirements of air conditioning and dehumidifying systems.

6.6 **Air quality and temperature control**

The equipment manufacturer’s recommendations relating to air quality and temperature control for equipment accommodation shall always be considered and adopted.

The substation switch room / control room shall be fitted with a ventilation system that is sized to maintain a temperature within the range +5°C to +40°C unless specific equipment requirements mandate otherwise.

The design of the ventilation system shall consider both the heat load of the equipment housed in the building and the external solar loading on the building.

Provision shall be made for clean filtered air to be supplied to the communications panels holding the fibre patch cords. Clean air fans do not require battery back-up.

6.7 **Ventilation assessment**

A ventilation assessment shall be carried out for each building / room, as early as practicable in the design stage. Only the necessary measures required to meet the minimum ventilation rates, as determined by the assessment, shall be incorporated into the substation design.

The ventilation assessment shall consider the minimum airflow requirements of the equipment, the internal and external heat loads, building insulation, thermal mass, air quality, local environmental issues, building constraints and safety aspects.

7.0 **SPECIFIC VENTILATION REQUIREMENTS**

7.1 **General**

Specific ventilation requirements have been determined for the following rooms within a major substation:

- Cable basements
- Switchrooms
- Control rooms
- Capacitor rooms
- Battery accommodation
- Indoor transformer bays

7.2 **Cable basements**

Major substation cable basements are often mostly situated below ground level and as such they pose a particular challenge with regard to natural ventilation in order to avoid creating a confined space.

In most instances, on sloping sites and/or where there is adequate external wall area above ground level, a cable basement should preferably be naturally ventilated. This can be achieved by utilising banks of fixed ventilation louvres at high level in the above ground walls to act as exhaust openings supplemented by ventilation stacks or similar to provide inlet openings at low level.
In order to avoid the confined space issues in naturally ventilated cable basements, ventilation openings in the order of 5% of the floor area are generally provided. In determining the area provided by ventilation openings, all external doors shall be considered to be open to supplement other fixed ventilation.

In CBD and underground locations where it is found that natural ventilation is not possible because of building or other constraints, mechanical ventilation systems shall be adopted. Mechanical ventilation systems can incorporate one or more system components as required, including a fresh air fan, filters, exhaust fan and supply and exhaust ductwork to distribute the air throughout the cable basement and to dilute or remove any hazardous gases present.

Because the cable basement is the lowest level in the substation the exhaust ventilation system is provided with droppers to exhaust at both high level and low level.

7.3 Switchrooms

The ventilation requirements for a switchroom are determined by:

- heat loss from the switchgear and cabling,
- heat gain through the building fabric,
- thermal mass of the building components,
- ventilation requirements for personnel,
- ventilation requirements for any battery enclosures in the room, and
- temperature limitations inside the room for a particular set of outdoor conditions.

A further consideration is the minimisation of dust entry to the room and the impact of aggressive external environments on equipment within the room.

In most instances, where there is adequate external wall area above ground level, the switchroom should preferably be naturally ventilated.

For a switchroom of masonry construction with a concrete or well insulated ceiling and a ventilated roof space, the open area required for natural ventilation to dissipate the heat loss from the switchgear is generally in the order of 1% to 1.5% of the floor area. This value shall be checked in each instance for the particular construction adopted and the heat loss from the equipment used.

Any overpressure requirements associated with the equipment used shall be addressed separately from the ventilation requirements. Refer to Clause 5.5.

In CBD and other locations where natural ventilation may not be possible, mechanical ventilation systems are to be adopted. These can incorporate one or more system components as required, including a fresh air fan, filters and ductwork to distribute the air throughout the switchroom together with an exhaust fan and ductwork. Where GIS equipment is installed the exhaust system ductwork is provided with droppers to exhaust at both high and low level.

7.4 Control rooms

The ventilation rate for a control room is determined from the following:

- heat loss from the equipment, control panels, battery chargers etc.,
- heat gain through the building fabric,
- thermal mass of the building components,
- ventilation requirements for personnel,
- ventilation requirements for any battery enclosures in the room, and
- temperature limitations inside the room for a particular set of outdoor conditions.
A further consideration is the minimisation of dust entry to the room and the impact of aggressive external environments on equipment within the room.

In most instances, where there is adequate external wall area above ground level, the control room should preferably be naturally ventilated.

For a control room of masonry construction with a concrete or well insulated ceiling, the open area required for natural ventilation to dissipate the heat loss from the electrical equipment is generally in the order of 1.0% of the floor area. This value shall be checked in each instance against the heat loss from the equipment.

In CBD and other locations where natural ventilation may not be possible, mechanical ventilation systems shall be adopted. These can incorporate one or more system components as required, including a fresh air fan, filters and ductwork to distribute the air throughout the control room together with an exhaust fan and ductwork.

7.5 Capacitor rooms

The ventilation rate for a capacitor room is determined from the following:

- heat loss from the capacitors and cabling,
- heat gain through the building fabric,
- thermal mass of the building components,
- ventilation requirements for personnel, and
- temperature limitations inside the room for a particular set of outdoor conditions.

A further consideration is the minimisation of dust entry to the room and the impact of aggressive external environments on equipment within the room.

In most instances, where there is adequate external wall area above ground level, the capacitor rooms should preferably be naturally ventilated.

Capacitor rooms should preferably be of concrete or masonry construction with concrete or well insulated ceilings to minimise the heat that enters the room. Alternatively, the Designer may consider the use of well insulated lightweight building construction throughout that provides an equivalent thermal performance, subject to the written approval of Ausgrid. This will enable the ventilation openings to be made as small as possible to minimise dust and contaminant entry.

Because of the variability in the layout of capacitor rooms, and the difference in the operation of the capacitors between city and suburban substations, the requirements for ventilation area are typically determined on a site specific basis.

In each instance the open area required for natural ventilation to dissipate the heat loss from the capacitors shall be determined for the particular construction adopted and heat loss from the equipment used.

Any overpressure requirements associated with the equipment used shall be addressed separately from the ventilation requirements. Refer to Clause 5.5.

In CBD and other locations where natural ventilation may not be possible, mechanical ventilation systems are used. They incorporate a fresh air fan, filters and ductwork to distribute the air throughout the capacitor room together with an exhaust fan and ductwork.

7.6 Battery accommodation

For new major substations, NS185 requires that batteries are to be located in suitable metal cabinet-type accommodation within the control room / switch room.

All battery enclosures shall have ventilation provided in accordance with the requirements of AS 2676.2 Guide to the installation, maintenance, testing and replacement of secondary batteries in
buildings – Part 2: Sealed cells to keep the average concentration of hydrogen gas within the limits specified in AS 3011.2 Electrical installations – Secondary batteries installed in buildings – Part 2: Sealed cells.

The battery enclosures should preferably be naturally ventilated.

Refer to the following Ausgrid drawings:

- A1-209935: Describes the ventilation requirements for battery enclosures.
- A1-210818: Describes the enclosure layout and clearance requirements when installed in a control room.

Refer also to NS191 Batteries and Battery Chargers in Major Substations for the specific battery enclosure requirements applicable for major substations.

7.7 Indoor transformer bays

The heat dissipated by a transformer is as a result of the electrical losses which increase the temperature of the windings and core. The heat from the windings is in turn transferred to the surrounding insulating medium, then to the heat exchangers, usually radiators. Due to the temperature difference the heat from the transformer radiators is finally transferred to the ambient air.

The ventilation and cooling for an indoor transformer bay are mainly required for the following:

- heat loss from the transformer for a particular set of outdoor conditions, and
- ventilation requirements for maintenance personnel servicing the equipment.

The heat gain through the building fabric is typically only minor compared to the heat dissipated by the transformer.

The life of a transformer, at rated load, is dependent on both temperature effects and time. Hence, it is essential that transformers be provided with adequate cooling such that they operate within predetermined temperature limits both during normal operation and under conditions of emergency operation.

Natural ventilation is the preferred method for ventilation and cooling of an indoor transformer bay. For calculations, a worst case ambient outside temperature of 45°C shall be used.

For long term reliability of supply the use of mechanical ventilation systems should be avoided. If a mechanical ventilation system is installed then transformer operation during periods of ventilation system maintenance needs to be considered in the design of the system. This may require the provision of duty and stand-by fans, duplication of controls and other aspects.

The design of a mechanical ventilation system shall also consider the potential impacts of a major transformer fire, including the need to efficiently exhaust heat and smoke from the building in order to limit damage to the building structure and the electrical equipment.

8.0 VENTILATION SYSTEM COMPONENTS

8.1 General

The main components of ventilation systems used in major substations include the following:

- Ductwork
- Fire dampers
- Air filters
- Louvres and grilles
The key details of the ventilation system shall be recorded and updated in Ausgrid’s SAP system as an integral part of the installation process. Refer to Clause 5.8.

8.2 Ductwork

All ductwork and any composite material employed in the construction of ductwork shall conform with the requirements of AS 4254 Ductwork for air handling systems in buildings.

The materials used for the construction of ductwork are to have a smoke developed index not greater than three (3) and a spread of flame index not greater than zero (0) when separately tested in accordance with AS 1530.3 Simultaneous determination of ignitability, flame propagation, heat release and smoke release.

Flexible connections having a minimum width of 150mm are to be provided at the intake and discharge connections of all fans. Flexible connections are to be manufactured from heavy duty, waterproof, fire retardant material in accordance with AS 1668.1 Fire and smoke control in multi-compartment buildings and are to be airtight.

Sheet metal ductwork and fittings are to be fabricated from steel, machine bent and free from waves and buckles. All burrs and sharp edges are to be removed.

The material for sheet metal ductwork, either galvanised steel or stainless steel, is to be selected to suit the particular application and conditions on site.

The thickness of ductwork is to be suitable for the pressure class in accordance with AS 4254.

Rectangular sheet metal ductwork is to be reinforced in accordance with the requirements of AS 4254.

All joints in ductwork shall be sealed and airtight. All bends are to be fitted with approved turning vanes.

Fire dampers shall be installed where ductwork passes through fire rated construction. Where fire dampers are installed, suitable access panels are to be provided, where necessary, to allow access for inspection and servicing.

Ductwork should not be located above major electrical equipment or enclosures. Where this is not reasonably practicable, consideration should be given to the use of insulated ductwork or other measures to avoid the risk of any condensation falling onto the electrical equipment.

8.3 Fire dampers

Fire dampers shall be manufactured in accordance with AS 1682 Fire dampers and shall be installed in all openings provided for the passage of air or ducts through fire rated construction.

Fire dampers shall be of the multi-blade type, steel blades housed in a welded steel frame, suitable for the particular application. Damper blades shall pivot on stainless steel shafts in self aligning bearings and be held in the open position by a fusible link arranged to lock on closure.

Curtain type fire dampers shall not be used.

The material for the fire damper, either galvanised steel or stainless steel, shall be selected to suit the particular application and conditions on site.

Fire dampers are to have a free area of not less than 85% of the face area of the damper and are to be installed in accordance with AS 1668 The use of ventilation and air conditioning in buildings and the manufacturer’s instructions.

Fusible links are to be marked with the maximum working load, year of manufacture and the manufacturer’s name or identifying symbol and fully comply with the requirements described in AS 1890 Thermally released links. The load applied in service is not to exceed the marked working load of the link and is to take into account the dynamic loading due to airflow.
Fusible links shall be as manufactured by Archer, Elsie or other approved equivalent.

Where ductwork is installed or access to the fire damper is via a fire rated ceiling, suitable access panels are to be provided to allow inspection and servicing of the bearings, blades and fusible link.

8.4 Air filters
Supply air ventilation systems shall be provided with fabric type, disposable air filters manufactured in accordance with AS 1324.1 Air filters for use in air conditioning and ventilation: Part 1: Application, performance and construction.

Filters are to be of the pleated panel type having a thickness not less than 25mm and be supported by a wire grid. All filters are to be housed within a supporting frame and suitably sealed to prevent air leakage using gaskets and spring type fasteners.

All filters shall be located to comply with AS 1668.1 with filter media approved in compliance with AS 1530 Methods for fire tests on building materials, components and structures.

All filter media shall have a minimum performance rating of F5 when tested in accordance with AS 1324.1.

The control of dust and contaminants in aggressive environments may require consideration of alternative air filter types. Alternatives should be assessed on a site specific basis and could include the use of HEPA filters (e.g. for coal dust), or reusable type air filters where frequent filter replacement is expected.

Alternative filter types shall be subject to the written approval of Ausgrid.

8.5 Ventilation louvres and grilles

8.5.1 Weatherproof louvres
Weatherproof louvres shall be of the fixed horizontal blade type designed to prevent the ingress of rain under varying wind and rain conditions. All rainwater collected by the louvre is to be discharged to the weather side.

The louvres shall be manufactured from extruded aluminium using extruded aluminium blades in an extruded aluminium frame. Each set of blades is to be nominally 100mm depth and incorporate a minimum of two (2) rain traps in the blade extrusion. Louvre finish is to be anodised aluminium, baked enamel or powder coating as required.

For very weather exposed locations, the use of storm resistant weather louvres may be required. These types of installations should be assessed on a site specific basis and could include the use of double stage louvres for exposed south facing locations.

Alternative louvre types shall be subject to the written approval of Ausgrid.

Intruder resistant security measures may be required for some louvre locations, depending on the sill height and any surrounding climb aids. Refer to NS 185 Major Substations Building Design Standard for details.

All louvres are to incorporate vermin mesh screens.

The free area of the louvre must not be less than 55% of the face area.

8.5.2 Supply air diffusers
Supply air diffusers shall be of the horizontal blade type, extruded aluminium blades in an extruded aluminium frame. The frame shall form a border with neatly mitred corners and shall incorporate concealed fixings.

Supply air diffuser finish is to be anodised aluminium, baked enamel or powder coating as required.
Supply air diffusers are to be properly adjusted to give the required air flowrate without the introduction of excessive noise.

8.5.3 Inlet and exhaust grilles

Inlet and exhaust air grilles installed inside the building shall consist of a 12mm x 12mm grid, 12mm deep, egg crate type aluminium core fixed in an extruded aluminium frame. The frame shall form a border with neatly mitred corners and shall incorporate concealed fixings. Finish is to be anodised aluminium, baked enamel or powder coating as required.

Inlet and exhaust grilles are to be fitted with vermin screens.

8.5.4 Relief air grilles

Relief air grilles shall be of the horizontal blade type, extruded aluminium blades in an extruded aluminium frame. The frame shall form a border with neatly mitred corners and shall incorporate concealed fixings. Finish is to be anodised aluminium, baked enamel or powder coating as required.

Relief air grilles are to have a minimum free area of 80% of the face area.

Relief air grilles are to be fitted with vermin screens.

8.5.5 Vermin screens

Vermin screens shall be installed at the rear of each inlet, relief or exhaust grille and on all weatherproof louvres.

Vermin screens are to be of grade 316 stainless steel welded mesh, 12.7mm pitch, wire diameter 1.2mm minimum.

8.5.6 Bush fire ember guards

In bush fire prone areas all ventilation openings shall be fitted with ember guards made from stainless steel wire mesh having a maximum aperture size of 2mm.

Ember guards shall be close fitting such that any gaps between the steel wire mesh and the ventilation opening does not exceed 2mm.

The Designer may consider the use of alternative aperture sizes for the ember guards subject to a detailed assessment of the substation fire risk. The use of larger aperture sizes should be assessed on a site specific basis, and should consider factors such as exposed combustible materials (e.g. cable sheaths), the risk of ember build-up and the consequences of fire propagation and loss of supply.

Alternative aperture sizes for ember guards shall be subject to the written approval of Ausgrid.

8.5.7 Noise

The ventilation fan plant room walls, and sections of ventilation ductwork shall be acoustically lined, where necessary, to reduce noise to acceptable levels. Silencers are to be used where required.

The final sound pressure level of the completed installation is to be in accordance with AS/NZS 2107 Acoustics – Recommended design sound levels and reverberation times for building interiors and also with the recommendations of any acoustic studies undertaken for the site.

8.5.8 Alternative materials

The Designer may consider the use of alternative materials for ventilation louvres and grills that are exposed to high pollution or aggressive environments such as moist, salt laden air. Alternatives should be assessed on a site specific basis and could include the use of stainless steel components to reduce the ongoing costs of maintenance and replacement at exposed locations.

Alternative materials for ventilation louvres and grills shall be subject to the written approval of Ausgrid.
9.0 AIR CONDITIONING AND DEHUMIDIFYING

9.1 General

The need for an air conditioning and/or dehumidifying system shall be based on a site specific ventilation assessment and shall be subject to the approval of Ausgrid.

Air conditioning and dehumidifying systems shall only be adopted as a last resort where adequate control of temperature and/or air quality cannot be achieved cost effectively by any other means and is essential for the equipment as specified.

Alternative design approaches shall be considered to demonstrate that the required equipment design criteria cannot be otherwise satisfied. This should include an options assessment typically using the following hierarchy:

- Natural ventilation
- Mechanical ventilation
- Additional building insulation and thermal mass
- Strategic vent positioning and protection
- Alternative vent filtration methods
- Local protection of critical equipment components
- Alternative equipment design
- Planned refurbishment / replacement of affected equipment
- Other aspects.

It is anticipated that only those sites which experience extended periods of hot weather and/or are located in aggressive environments (moist, salt laden or dusty air) will require an air conditioning or dehumidifying system.

All proposals for installation of an air conditioning and dehumidifying system shall include a Life Cycle Cost analysis based on the capital and operating costs, expected site conditions and the Design Life of the substation.

9.2 Key design criteria

The system shall aim to maintain the internal temperature within the acceptable limits for the equipment specified and/or stabilise the humidity at a required level to address any condensation issues.

The key design criteria for air conditioning systems shall incorporate the following aspects:

(a) Temperature control to maintain the room within the range +5°C to +40°C unless specific equipment requirements mandate otherwise.

(b) Relative humidity controlled to the level required to address condensation impacts on critical electrical equipment only.

(c) A heating cycle is generally not required. For colder climates, a ventilation assessment (Clause 6.7) shall be used to investigate possible building materials, heating cycle and other options available for temperature control, based on a Life Cycle Cost analysis.

(d) Filtered fresh air to be incorporated where required.

(e) Ductwork to be provided to distribute conditioned air if required.

(f) Ductwork, plant and equipment not to be located above major electrical equipment or enclosures.

(g) Condensate trays and drains not to be located above electrical equipment.

(h) All condensate to be drained by gravity to an external location, or to an internal sewer connection if available.
(i) Plant and equipment to be located to allow for ready access.

(j) Suitable treatment for all penetrations to maintain the required fire rating of building elements, with reasonable access provided for future inspection and maintenance activities. Refer also to Clause 8.3 for access to fire dampers.

(k) Internal and external (data only) temperature monitoring, including alarms, together with system status, differential pressure across filters and other critical data, to be provided via the data communications network.

(l) Remote system access for interrogation, reporting and alarms, to be provided via the data communications network.

(m) Fully adjustable thermostatic control for automatic operation.

(n) Manual over-ride function for up to 8 hours operation.

Dehumidifying systems shall have the same design criteria but without the requirement for significant cooling of the space. In this case, temperature control shall be maintained by other means to the requirements of this Network Standard.

9.3 Main system components

For most Ausgrid applications, air conditioning and dehumidifying systems are expected to consist of a split ducted air cooled refrigeration system. All systems installed shall provide conditioned air only to selected and approved locations within the substation.

Individual split systems shall be sized and designed to meet the separate requirements of individual rooms. Alternatively, “multi-head” systems with one outdoor unit and multiple indoor units can be used provided that reliability and maintenance issues associated with a single unit are addressed.

The use of single outdoor units without redundancy may not be suitable for critical locations containing equipment that is highly sensitive to temperature fluctuations. Where system redundancy is deemed to be essential for reliability, possible configurations could include the use of 3 by 50% or 2 by 100% units to provide the required standby capacity.

The main system components of a typical split ducted air cooled system are as follows:

- Indoor fan coil unit(s).
- Outdoor condensing unit(s) with anti-corrosion treatment for the coils.
- Galvanised metal ductwork, hangers, supports, anti-vibration mountings and air grilles.
- Interconnecting refrigeration pipework (to outdoor unit).
- Safety tray and condensate gravity drain to outside, or to an internal sewer connection.
- Power and control cabling including separate temperature sensor(s).
- Suitable fire rated seals / collars for all penetrations through fire rated building elements.
- Self-contained unit control and safety systems with remote access.

Suitable ductwork shall be provided to distribute the conditioned air throughout the space. Internal ductwork and fan coil units shall not be located directly above major electrical equipment or control cabinets.

Where required, an outside fresh air component can be introduced to ensure a nominal positive airflow pressure within the conditioned space. Supply air systems draw fresh air from outside and shall be provided with filters to minimise the amount of dust that is allowed to enter the conditioned space. Associated ducting is to be provided to the indoor fan-coil unit.

Fresh air intakes shall be leeward facing where practicable and located clear of exhaust openings or other sources of pollution that may reduce the quality of the air entering the system.

Fresh air intake plenums and ducts shall be maintained dry in service. Provision should also be made for inspection and cleaning of the internal surfaces.
9.4 System control and over-ride
The preferred method of control for a typical air conditioning and dehumidifying system serving a substation area is a fully adjustable thermostatic control for automatic operation, with a manual over-ride to initiate a system start for a particular area.

Automatic temperature control shall be provided such that temperature is maintained within three (3) degrees of the thermostat set-point. The temperature control shall be such that access to changing the set-point is limited to restricted personnel only, typically via password.

The manual over-ride function shall be limited to up to 8 hours operation by an adjustable timer so that if the system is left on for an extended period of time the unit will not continue to operate unnecessarily and control will revert to automatic mode after the set time has elapsed.

9.5 System signage
The air conditioning and dehumidifying system shall be provided with clear signage located adjacent to the system control panel. As a minimum, the signage shall provide the following system details:

- The system design thermostat set-point.
- The operation of the manual over-ride function.
- Instructions to RESET the system when exiting the substation.
- Ausgrid contact to report system faults and alarms.
- Ausgrid key reference drawing(s).
- System details – manufacturer, installer, model, serial number.

The signage should highlight the system design parameters, ensure that staff can readily RESET the system upon exit and facilitate the reporting of any faults and alarms.

9.6 System commissioning and documentation
The air conditioning and dehumidifying system shall be correctly installed and fully commissioned on site with a minimum 12 months defects liability period to ensure effective long term operation of the system.

Electronic copies of design drawings and specifications shall be provided in Ausgrid compatible format. “As built” drawings shall be provided within 4 weeks of completion of construction in the same format.

The system maintenance procedures and operating manuals shall:

- Be submitted to Ausgrid for review and approval prior to an application being submitted for Practical Completion.
- Include recommended procedures for all maintenance and operation activities.
- Ensure that the specified Design Life is achieved to comply with Life Cycle Costing requirements.
- Include information regarding operation and replacement instructions for items which have been amended during installation.
- Comply with the relevant requirements of NS 210 Documentation and Reference Design Guide for Major Substations and NS 212 Integrated Support Requirements for Ausgrid Network Assets.
- Be in a format and structure that is suitable for uploading into the Ausgrid record management system (HPRM).

Within four weeks of Practical Completion, the final maintenance procedures and operating manuals detailing all the inspection, maintenance and operational requirements shall be provided.
Certification shall be provided stating the air conditioning and dehumidifying system has been designed by appropriately qualified personnel in accordance with the Ausgrid design brief, all relevant Network Standards, the relevant Australian Standards and accepted standards of practice prior to approval or acceptance of the design.

Certification of the as-installed works shall be provided in accordance with the Ausgrid design documentation and shall be provided to Ausgrid as part of the building Final Occupation Certificate process.

10.0 RECORDKEEPING

The table below identifies the types of records relating to the process, their storage location and retention period.

<table>
<thead>
<tr>
<th>Type of Record</th>
<th>Storage Location</th>
<th>Retention Period*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved copy of the network standard</td>
<td>BMS Network sub process Standard – Company</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Draft Copies of the network standard during amendment/creation</td>
<td>TRIM Work Folder for Network Standards (Trim ref. 2014/21250/248)</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Working documents (emails, memos, impact assessment reports, etc.)</td>
<td>TRIM Work Folder for Network Standards (Trim ref. 2014/21250/248)</td>
<td>Unlimited</td>
</tr>
</tbody>
</table>

* The following retention periods are subject to change eg if the records are required for legal matters or legislative changes. Before disposal, retention periods should be checked and authorised by the Records Manager.

11.0 AUTHORITIES AND RESPONSIBILITIES

For this network standard the authorities and responsibilities of Ausgrid employees and managers in relation to content, management and document control of this network standard can be obtained from the Company Procedure (Network) – Production/Review of Network Standards. The responsibilities of persons for the design or construction work detailed in this network standard are identified throughout this standard in the context of the requirements to which they apply.

12.0 DOCUMENT CONTROL

Document Owner : Head of Asset Engineering Policy & Standards
Distribution Coordinator : Manager – Asset Engineering Standards
Annexure A – Sample Compliance Checklist

Network Standard Checklist Form

NS200 Major Substations Ventilation Design Standard

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Refer Clause</th>
<th>Completed/ Actioned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>This standard provides the requirements for natural, mechanical and other types of ventilation to be considered and included into the design of new major substations.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Functional Requirements

<p>| 1 | Where natural ventilation is used the allocated open area does not exceed 1% of the floor area of the room unless required otherwise by this standard NS200 | 5.2 | Yes/No/NA |
| 2 | External wall openings require fire dampers due to BCA requirements, defined fire hazard, or specific requirement of a network standard | 5.4 | Yes/No/NA |
| 3 | Protection of external wall openings required due to proximity of potential fire hazards adjacent to the site | 5.4 | Yes/No/NA |
| 4 | Overpressure requirements of NS185 are assessed separately from ventilation requirements | 5.5 | Yes/No/NA |
| 5 | Protection measures required to control dust and contaminants at sites located in aggressive environments | 5.6 | Yes/No/NA |
| 6 | Ventilation to all rooms and accessible locations within the building has eliminated confined spaces wherever possible. | 5.7 | Yes/No/NA |
| 7 | Information relating to the ventilation system recorded in the SAF system | 5.8 | Yes/No/NA |
| 8 | Designer Safety Report submitted for the ventilation design | 5.2 | Yes/No/NA |
| | Natural ventilation system design takes maximum advantage of air circulation via placement of vents, observation of prevailing wind systems, etc. | 8.3 | Yes/No/NA |</p>
<table>
<thead>
<tr>
<th></th>
<th>Rule Description</th>
<th>Section</th>
<th>Yes/No/NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Mechanical ventilation systems controlled via 7-day time clock with override by light switch</td>
<td>6.4</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>11</td>
<td>Air conditioning and dehumidifying systems designed in accordance with AS 1669.2</td>
<td>6.6</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>12</td>
<td>Nominal temperature range within switchroom / control room is +5°C to +40°C</td>
<td>6.8</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>13</td>
<td>Design of ventilation system includes consideration of equipment heat load and building external solar loading</td>
<td>6.6</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>14</td>
<td>Ventilation assessment considers minimum airflow requirements and safety aspects</td>
<td>9.7</td>
<td>Yes/No/NA</td>
</tr>
</tbody>
</table>

General Civil Design Requirements

<table>
<thead>
<tr>
<th></th>
<th>Rule Description</th>
<th>Section</th>
<th>Yes/No/NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Cable basements – preferably naturally ventilated, with ventilation openings in the order of 0.5% of floor space are provided</td>
<td>7.2</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>16</td>
<td>Cable basements – where natural ventilation is not possible in the CBD and underground locations, mechanical ventilation systems are implemented</td>
<td>7.2</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>17</td>
<td>Switchroom – preferably naturally ventilated with provision for minimisation of dust and contaminants</td>
<td>7.3</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>18</td>
<td>Switchroom – natural ventilation openings in the order of 1 – 1.5% of floor space are provided</td>
<td>7.3</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>19</td>
<td>Switchroom – overpressure considerations addressed separately to ventilation requirements (see AS1188)</td>
<td>7.3</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>20</td>
<td>Switchroom – where natural ventilation is not possible in the CBD and underground locations, mechanical ventilation systems are implemented</td>
<td>7.3</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>21</td>
<td>Control room - preferably naturally ventilated with provision for minimisation of dust and contaminants</td>
<td>7.4</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>22</td>
<td>Control room - open area for ventilation does not exceed 1% of floor space</td>
<td>7.4</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>23</td>
<td>Control room - where natural ventilation is not possible in the CBD and underground locations, mechanical ventilation systems are implemented</td>
<td>7.4</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>24</td>
<td>Capacitor room - preferably naturally ventilated with provision for minimisation of dust and contaminants</td>
<td>7.5</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>25</td>
<td>Capacitor room – the requirements for ventilation determined on site specific basis</td>
<td>7.5</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>26</td>
<td>Capacitor room – where natural ventilation is not possible in the CBD and underground locations, mechanical ventilation systems are implemented</td>
<td>7.5</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>27</td>
<td>Battery accommodation – for new substations batteries located in metal cabinets within the control room /switchroom</td>
<td>7.6</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>28</td>
<td>Battery accommodation – ventilation provided in accordance with AS 2670.2</td>
<td>7.6</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>29</td>
<td>Battery accommodation – enclosures naturally vented</td>
<td>7.6</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>30</td>
<td>Indoor Transformer bays - preferably natural ventilation; use of mechanical ventilation is to be avoided due to reliability concerns</td>
<td>7.7</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>31</td>
<td>Indoor Transformer bays – for purpose of calculations worst case external temperature is +45°C</td>
<td>7.7</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>32</td>
<td>Indoor Transformer bays – where mechanical ventilation is used, consideration is given to system maintenance needs, including possible standby arrangements, and to the potential impacts of a transformer fire</td>
<td>7.7</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>33</td>
<td>Ductwork – smoke developed index <2 and spread of flame index <0</td>
<td>8.2</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>34</td>
<td>Ductwork – sheetmetal requirements of Cl. 8.2 met</td>
<td>8.2</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>35</td>
<td>Ductwork – fire dampers installed where ductwork passes through fire rated construction</td>
<td>8.2</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>36</td>
<td>Fire Dampers – manufactured in accordance with AS 1082</td>
<td>8.3</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>37</td>
<td>Fire Dampers – curtain type fire dampers not used</td>
<td>8.3</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>38</td>
<td>Fire Dampers – requirements of Cl. 8.3 met</td>
<td>8.3</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>39</td>
<td>Air filters – supply air ventilations systems fitted with fabric type disposable air filters in accordance with AS 1324.1, or an approved alternative</td>
<td>8.4</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>40</td>
<td>Air filters – requirements of Cl. 8.4 met</td>
<td>8.4</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>41</td>
<td>Ventilation louvres – requirements of Cl 8.5 met</td>
<td>8.5</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>42</td>
<td>Ventilation louvres – in bush fire area ventilation openings fitted with ember guards</td>
<td>8.5.6</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>43</td>
<td>Site specific ventilation assessment requires use of air conditioning for ventilation purposes</td>
<td></td>
<td>9.1</td>
</tr>
<tr>
<td>44</td>
<td>Alternative options considered as in hierarchy of preferred ventilation options</td>
<td></td>
<td>9.1</td>
</tr>
<tr>
<td>45</td>
<td>Key design criteria Cl. 9.2 met</td>
<td></td>
<td>9.2</td>
</tr>
<tr>
<td>46</td>
<td>Where required, outside fresh air component maintains nominal positive pressure within conditioned space and filtered to minimise dust ingress</td>
<td></td>
<td>9.3</td>
</tr>
<tr>
<td>47</td>
<td>Provision included for inspection and cleaning</td>
<td></td>
<td>9.3</td>
</tr>
<tr>
<td>48</td>
<td>Fully adjustable thermostatic control with manual over-ride provided</td>
<td></td>
<td>9.4</td>
</tr>
<tr>
<td>49</td>
<td>Restricted access to changing thermostatic set-point provided by password</td>
<td></td>
<td>9.4</td>
</tr>
<tr>
<td>50</td>
<td>Manual over-ride limited to up to 8 hours operation by adjustable timer</td>
<td></td>
<td>9.4</td>
</tr>
<tr>
<td>51</td>
<td>System signage provided, including instructions to RESET upon exit</td>
<td></td>
<td>9.5</td>
</tr>
<tr>
<td>52</td>
<td>System commissioning and documentation provided</td>
<td></td>
<td>9.5</td>
</tr>
</tbody>
</table>

Notes:

The signatures panel of this document has been removed for privacy considerations. The remainder of the document is unchanged.